On the Internalisation, Intraplasmodial Carriage and Excretion of Metallic Nanoparticles in the Slime Mould, Physarum Polycephalum
نویسندگان
چکیده
The plasmodium of Physarum polycephalum is a large single cell visible with the naked eye. When inoculated on a substrate with attractants and repellents the plasmodium develops optimal networks of protoplasmic tubes which span sites of attractants (i.e. nutrients) yet avoid domains with a high nutrient concentration. It should therefore be possible to program the plasmodium towards deterministic adaptive transformation of internalised nanoand micro-scale materials. In laboratory experiments with magnetite nanoparticles and glass micro-spheres coated with silver metal the authors demonstrate that the plasmodium of P. polycephalum can propagate the nano-scale objects using a number of distinct mechanisms including endocytosis, transcytosis and dragging. The results of the authors’ experiments could be used in the development of novel techniques targeted towards the growth of metallised biological wires and hybrid nanoand micro-circuits. On the Internalisation, Intraplasmodial Carriage and Excretion of Metallic Nanoparticles in the Slime Mould, Physarum Polycephalum
منابع مشابه
Towards slime mould chemical sensor: Mapping chemical inputs onto electrical potential dynamics of Physarum Polycephalum
Plasmodium of slime mould Physarum polycephalum is a large single celled organism visible unaided by the eye. This slime mould is capable of optimising the shape of its protoplasmic networks in spatial configurations of attractants and repellents. Such adaptive behaviour can be interpreted as computation. When exposed to attractants and repellents, Physarum changes patterns of its electrical ac...
متن کاملTowards slime mould colour sensor: Recognition of colours by Physarum polycephalum
Acellular slime mould Physarum polycephalum is a popular now user-friendly living substrate for designing of future and emergent sensing and computing devices. P. polycephalum exhibits regular patterns of oscillations of its surface electrical potential. The oscillation patterns are changed when the slime mould is subjected to mechanical, chemical, electrical or optical stimuli. We evaluate fea...
متن کاملOn Attraction of Slime Mould Physarum Polycephalum to Plants with Sedative Properties
A plasmodium of acellular slime mould Physarum polycephalum is a large single cell with many nuclei. Presented to a configuration of attracting and repelling stimuli a plasmodium optimizes its growth pattern and spans the attractants, while avoiding repellents, with efficient network of protoplasmic tubes. Such behaviour is interpreted as computation and the plasmodium as an amorphous growing b...
متن کاملSlime mould electronic oscillators
We construct electronic oscillator from acellular slime mould Physarum polycephalum. The slime mould oscillator is made of two electrodes connected by a protoplasmic tube of the living slime mould. A protoplasmic tube has an average resistance of 3 MOhm. The tube’s resistance is changing over time due to peristaltic contractile activity of the tube. The resistance of the protoplasmic tube oscil...
متن کاملSounds Synthesis with Slime Mould of Physarum Polycephalum
This paper introduces a novel application of bionic engineering: a bionic musical instrument using Physarum polycephalum. Physarum polycephalum is a huge single cell with thousands of nuclei, which behaves like a giant amoeba. During its foraging behavior this plasmodium produces electrical activity corresponding to different physiological states. We developed a method to render sounds from suc...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- IJNMC
دوره 3 شماره
صفحات -
تاریخ انتشار 2011